ステライメージ Ver.6.5 での惑星画像処理

渡並 秀一

ステライメージと言うと、天体写真用画像処理ソフトというイメージですが、案外、惑 星の動画処理にも使えます。ただ、パラメータの設定等、何度も繰り返し使い、見極めが 必要で面倒な為、レジスタックス等を使用する方が多いと思います(値段も高いですし)。 ネットで調べるとレジスタックスの使用方法は、案外見つかりますが、ステライメージで の惑星処理はあまり見かけません。そこで、私の活用方法をご紹介します。ちなみに、私 はレジスタックスを使用して、まだ満足ゆく画像処理はできていません。

その

私は、ソニーのビデオカメラを使用して、惑星の動画を撮影します。最近の機種は、HD 撮影できる為、AVCHD 方式でメモリ等に保存されます。このままではステライメージには 読み込みができない為、変換処理が必要になります。

ただ、ステライメージはコーデックにうるさく、無圧縮 AVI に変換しても読み込めない事がよくあります。そこで お勧めなのが、『TMPGEnc4.0XPress』です。無圧縮 AVI+音 声無で処理させれば、レジスタックスでも読み込みできま す。HD 画質の AVI に変換できますので、その後の画像処理 にも良い影響をもたらせます。ただ、このソフト、最新バ ージョンに切り替わっています。このバージョンで、まだ 読み込めるか確認はしておりません。

『TMPGEnc4.0XPress』で無圧縮 AVI に変換すれば、下準備は完了です。

その

対象7	1-192HU:	[2003秋] → [1597	枚]		
	フレーム番号	時刻	評価値	1	
1	V 1588	00.0056.32	1.51824	- U	
2	V 353	00:00:11.78	1.50750		
3	V 1347	00:02:44:94	149917		
4	1703	00.0056.82	1.49909		
5	V 1590	00:00:56.39	1.49775		
6	V 1919	00.01.04.03	1.49613		
7	V 1592	00:00:56.45	1.49502		
8	V 1597	00.00.56.62	1.49285		
	Fzyhr#2//#700		0	c	
<< 表示(E)		0.000	4+2	4+201	
✓ 位置合わせ(P):		6.93/5/20/904		YH0	
	「他の新心」	加算干均		0.6	
	Edit - C.M	IT MAKES A LOOK	19.04		
0.	11年 (99 / 77	「「「「「「「「」」」」「「」」」	1877		
	マッチンク目を定く(0)	30541: 1	A 0		

ここから『ステライメージ Ver.6.5』の登場です。まず は、AVI 化した動画を読み込ませます。

ファイルの「動画を開く」から動画を選択します。フレー ムの最初と最後を選択し、コンポジットボタンを押すと、 ステライメージが画像の判定を行います。画像枚数が多い と、少し時間がかかりますので、終了するまでしばらく待 ちましょう。画像判定が終了すると、使う画像の選定にな ります。「評価値」の部分をクリックするとソートできます。

画像の評価の大きい順に並ばせ、1500枚位選択すれば良いと思います。シーイングの良い 時は、もっと画像を多めに選択しましょう。私は、シーイングの悪い時は1300~1500枚程 度、良い時は2000枚以上合成させます。

惑星の場合は、「画像の重心」、「加算平均」を使用しましょう。ただ、天王星・海王星等、 大きさが小さい場合は、画像の重心では上手く合成できません。その場合は、「画像のマッ チング」を使用しましょう。 その

New?	fts 1	-			-
i.	1	180:	40.	19 9	0K 4+//25 167710
2	2	665	31		(E)7%6'a~(P)
3	1	9831	28	1	
1	3	68.01	10.	1	
(66)	12	0.01	1	12	
11		944 1	(¥.		
m					
25.0	0.92			7	
1		ERABOR: (TERES)	1		
9 4			04	6a	
	100002 1 2 4 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Merel I fai 1 1 2 3 4 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 3 4 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2 365 2 6 6 3 6 6 4 5 665 6 6 665 6 6 665 6 6 665 6 6 665 7 000 7 7 000 7 8 01 1000 9 02 1000 9 03 1000 9 03 1000 9 0400 1000	1 2 362: 41 2 6 66: 1 4 6 66: 1 4 6 66: 1 6 6 66: 1 1 7 6 1 1 2 6 66: 1 1 1 7 6 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 4 0 0 0 0 4 0 0 0 0 6 0 0 0 0 6 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 0

合成終了後の画像は、暗いと思いますので、「レベル調整」 を行って下さい。画像が明るくなれば、その画像を眼視の 時に見えた状況に近づけます。「マルチバンド・シャープ」 を使用します。通常、#1から#4までを使用します。私の 場合は、シーイングの良い時は#3まで、悪い時は#4まで を使用します。左側の数値は標準値を使用しますのでその ままにします。右側のボックスに直接40、30、20、10と入 力します。スライドバーを動かしてもその数字は入力でき ません。この機能はかなり強力ですので、惑星画像処理の 時には、必ず使用して下さい。眼視の時にはこれ位見えた よな、と思える位まで#3から#4まで使用してみて下さ い。

その

種類(M): 最大工)(a)	~法 •	7℃と'3-画像:
PSF申僅(P);	2.8	^
85/7(6):	0.001	
H770N0;	0.1	
最大線」通し回動(0;	20	and the second
播像索子·因有情報;		-
AD演員的71%(D)。	1	
リートアウト/イス%PD:	20	Q 100K Q
加持法	(BROL)	(表示(V) 一元に戻す(U)
Deletion (LIBBE(A)	OK	44:256 16.710

一番皆様が苦労するパラメータが「画像復元」だと思い ます。私も、ここまで何度も繰り返しました。ただ、この パラメータは使用している光学系、撮影機材によりかなり 変わってきます。なので、私のパラメータも参考にしてご 自分の最適値を見つけて下さい。

私は「最大エントロピー法」を使用します。PSF 半径は 「2.8」になります。それ以外は標準のままです。PSF 半径

の見極めは、繰り返し作業が5から7回程度で終ります。最大の20回まで行く場合は、数値を見直しましょう。この画像復元は3回位繰り返します。一度目が「2.8」の場合、二度目は「1.4」、三度目は「0.7」と半分にしてゆきます。

私の機材は、セレストロン CPC800GPS とソニーの HDR-CX550V、拡大用のアイピースは XW14mm を使用します。PSF 半径ですが、まず「5」以上になる事はないと思いますので、「5」 から少しずつ小さくして結果を確認するのが良いと思います。

その

ここまでできれば、完成はもうすぐです。ここからは、色々な フィニッシュ方法があると思います。個人的な方法ですが、「ト ーンカーブ調整」を行います。面倒くさがりな私は、「対数」や、 「コントラスト増」を選び、その後微調整しています。

そして最後は「シャープ」を使用します。「アンシャープマス ク」なので、数値はあまり大きくしていません。強さは「0.1」 か「0.2」にしています。個人的には、あまりきつい画像処理は 好みではありません。ただ、AVCHD 動画の場合は、少し今までよ りはきつめの処理になっています。でも、画像解像度が大きいの であまり気にならないのが救いだと思います。 私は、画像を確認して「明るさ/コントラスト」を調整したりします。フォトショップを お持ちの方は、それぞれ最終処理の方法があると思いますので、その辺りを付加してみる のも良いかもしれません。

この辺りが、最近の撮影になります。金星の太陽面通過は、ビデオカメラとフィルタ ーしか使用していませんが、この程度の画像にすることができます。個人的にはこれ位で も問題ないかなと思っています。

もっと詳しく知りたい方は、例会に出席して下さいね。9月以降、大分にいればお話し できると思います。こればかりは...。